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Asymptotic behavior of guiding-center diffusion in a model of electrostatic turbulence
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To compare with computer simulations of the diffusion of a test guiding center in a given elec-
trostatic turbulence, a nonlinear theory is applied to the “randomly phased waves” model, with
a single frequency w and an arbitrary wave number spectrum. The asymptotic behavior of the
diffusion coefficient D is determined in both limits of large and small turbulence amplitude a. For
a — 00, the classical “frozen turbulence” scaling D « a is found. For a — 0, an unusual quadratic
scaling is obtained: for all isotropic models, D goes to the same limit (v/2/w)a®. This behavior
originates in the “two scales” character of this asymptotic problem. It is examined in detail on a
simple form of the equation where the exact asymptotic solutions are obtained.

PACS number(s): 52.25.Fi, 52.65.+z, 05.40.4+j, 05.45.+b

I. INTRODUCTION AND OUTLINE
OF THE WORK

For more than two decades, a wealth of experimen-
tal and theoretical work has appeared concerning the
“anomalous” diffusion in nuclear fusion plasmas [1]. This
phenomenon is generally attributed to microscopic tur-
bulence (with a length scale much smaller than the
plasma radius). Among the various instabilities that may
be at the origin of such turbulence, low-frequency elec-
trostatic drift waves have drawn considerable attention;
much theoretical work has been devoted to ion and elec-
tron diffusion near the instability and in strong turbu-
lence.

The situation being particularly complex, some theo-
rists have been interested in a relatively simple and rea-
sonably realistic nonlinear model which has been called
the two-dimensional electrostatic plasma of guiding cen-
ters [2]. This model corresponds to a strongly magne-
tized plasma where the energy density is so low that the
external magnetic field is not modified locally; the elec-
tric field is then purely electrostatic, and the motion of
the charges averaged over a period of their gyration is
described by the relatively simple equation

dx(t)  E(x(t),t)xB
a ¢ Bz (1)

This model has been studied in different directions.
The present work is concerned with the diffusion of a
test guiding center in a given low-frequency random field
E(x,t). In this spirit, following Taylor and McNamara
[3], Montgomery [2], Dupree [4],... Misguich et al. [5]
derived a nonlinear diffusion equation relating the mean
squared displacement of a test charge moving in a sta-
tionary, homogeneous and isotropic field, to the correla-
tion function of its Fourier components. For a discrete
spectrum, this equation has the following form:

d2(r ()
dt?
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with the initial conditions (r2(0)) = d(r?(t))/dt|¢=o = 0.

Thereafter, Pettini and co-workers [6,7] made com-
puter simulations of test guiding-center diffusion in an
electrostatic field given by the following particular form
of the “randomly phased waves” model:

E(x,t) = % Z p(k) kcos(k-x — wt + px), (3)
keS

i.e., a weighted sum over a set S of harmonic waves, with
a single frequency w and wave numbers k = (27 /L) n such
that the field is periodic on the plane (n has integer com-
ponents). [The choice of a fixed frequency instead of a
dispersive function w(k) was necessary to keep the com-
puter time within reasonable limits.] The phases @y are
uniform random numbers on (0, 27). The field amplitude
E is defined as follows:

E? = (|E(x,1)*)xc (4)

(the average here is over one period 27w /w and over the
L x L periodicity cell); it has been divided by

1/2
o5 = (% sz(k)kz) , (5)

kes

so that the average electrostatic energy density equals
(8m)L1E2.

The randomly phased waves model for E(x, t) was cho-
sen because (a) the equations of motion (1) are equivalent
to the following Hamiltonian form for x = (z,y):

dz O0H dy 0OH
&~ "oy @ 0z (6)
y t oz
with H = (¢/B)¢, ¢ being the electrostatic potential; (b)
it is known that, if the field defined in Eq. (3) involves
more than two waves, these equations have chaotic so-
lutions [8]. Since large-scale chaos corresponds to a fast
diffusion process, this provides a mechanism for anoma-
lous diffusion.

502 ©1994 The American Physical Society



30 ASYMPTOTIC BEHAVIOR OF GUIDING-CENTER DIFFUSION . .. 503

With the isotropic version of (3), the correlation func-
tion in Eq. (2) is readily obtained and one arrives at

d (1 (t)) 2 1 2 2 ——1k’(r’(t))
—_ = J— E 7
2 a cos(wt) 3 P (k)k e 4 y ( )

where a = cE/B is the “turbulence amplitude.” We
have integrated this equation numerically with various
weights p(k) and sets S such that kmin < |k| < kmax; in
all cases, the solution (r2(t)) was observed to tend for
t = oo towards a diffusive asymptote:

(r*(®) ~ D(a)t, Va. (®)
Typical examples of this general behavior are shown be-
low (Figs. 2 and 3), displaying, in particular, the damped
oscillations observed for small a [6]. These graphs corre-
spond to the “one-wave diffusion” model [Egs. (9) and
(10)].

The differential equation (7) is the same as Eq. (32)
in Ref. [7] where the weight p(k) was set equal to k3
as in the simulated models. However, although these
models had a finite periodicity length L and were in fact
anisotropic, the numerical results were compared to the
more realistic theory for a continuous and isotropic wave
number spectrum (Eq. (33) in Ref. [7]). For such a com-
parison to have any meaning, it was of course necessary to
decide what relevant quantities should be identified or,
equivalently, to specify a (model-dependent) system of
time and length units. Since the models involve only one
frequency, the natural time unit was the period 27 /w. As
for the length unit, it was argued that a reasonable choice
was the largest wavelength Apax = 27/kmin: in Eq. (7),
the smallest wave numbers have the largest weight and
give the slowest decaying exponentials.

With these conventions, the theoretical diffusion coef-
ficients obtained for kmax > kmin are shown on Fig. 1
(solid line) as a function of @, on logarithmic scales;
In D(a) appears as a smooth curve, with two clear asymp-
totes: D(a)  a at large amplitude and D(a) o a? for a
small. We also show results from two simulations to in-
dicate the general observation that the computer “exper-
iments” yield diffusion coefficients which depend on the
model and that there is only a rough agreement with the
theoretical asymptotic predictions. The filled circles cor-
respond to an anisotropic set S of vectors k = (2r/L)n
with 4 < |n| <48 and n, > 0 [7]; the open circles are
results for the isotropic spectrum with 4<|n| <48 [9].

It was of course natural to examine whether the agree-
ment improved when every computer experiment was
compared to the theory corresponding strictly to the
same model, i.e., to Eq. (7) modified to take anisotropy
into account. This very simple generalization is described
in Sec. II. In particular, we show that the Corssin-like
[10] decoupling approximation, which is an essential in-
gredient of the theory for an arbitrary field (5], turns out
to be exactly satisfied by the field defined in Eq. (3),
under the conditions of Lagrangian stationarity and ho-
mogeneity.

Typical examples of the theoretical curves thus ob-
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FIG. 1. Ln-In plots of diffusion coefficient (D) vs turbu-
lence amplitude (a) from theory and computer simulations
(see text). Open and filled circles: simulation results for
two models [7,9]. Solid line: continuous spectrum theory (7].
Crosses: discrete spectrum theory [Eq. (7)] for both models.
Dashed line: one-wave diffusion model [Eq. (28)].

tained for isotropic models are shown on Fig. 1. With
the wave number spectra of both of the simulated models,
the modified theory yielded results (crosses) very close to
the continuous case. (Because of a symmetry inherent in
the theory, it yields identical results for these two mod-
els: see Sec. II.) More generally, for large amplitudes, we
observed that D(a) always approached a linear asymp-
tote, which only differed significantly from the L — oo
limit when the spectrum was very unrealistic: the largest
difference (dashed line) corresponds to the one-wave dif-
fusion model (see Sec. V). On the other hand, for small
amplitudes, our results strongly suggested the existence
of a quadratic asymptote with the same D/a? ratio for
all models, as Fig. 1 indicates.

So, the theoretical equation (7), and the more general
form it takes in anisotropic circumstances [Eq. (27)], ap-
peared to have scaling properties which had to be clari-
fied. The main result in this paper answers this question.
The large-amplitude asymptotic problem led to the tra-
ditional “frozen turbulence” [11] scaling D o a and our
work there is merely a generalization to anisotropic sit-
uations. As for the small-amplitude limit, it turned out
to be a nice problem in applied mathematics, leading to
the result that, because the randomly phased waves field
[Eq. (3)] involves a single frequency, there is a scaling
D o a? which differs from the quasilinear one [12]; in
particular, for all isotropic models, the asymptote does
not depend on the wave number spectrum.

These problems appear most clearly on the particular
form that the diffusion equation (7) takes when the spec-
trum is reduced to a single wave vector ko (or rather the
set of all wave vectors with the same length ko). In terms
of the following quantities
€= k—gaz,

Dah,  fe) = RO O)

T = wt,
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(7) then becomes

d’f(x)
dz?

which we shall refer to as the one-wave diffusion equa-
tion. As a description of reality, this is of course a true
caricature, but it displays very simply what is going on
in general, as we show in detail in Sec. III.

To obtain from equations like (2) a qualitative expres-
sion for the diffusion coefficient, it has become tradi-
tional to approximate (r%(t)) in the right-hand side by
its asymptotic limit (Dt), which allows the equation to
be integrated once and leads to a self-consistent rela-
tion for D(a). Applying the corresponding procedure to
Eq. (10), under the obvious condition that the “diffusion
coefficient”

= ecos(z) e @, (10)

df (z)
dz

Ae) = (11)

&— o0

must be positive for the integral to converge, we obtain

A
= 12

€ TT AR (12)
which yields a solution A = /e — 1 iff e > 1.

Thus, when € goes to infinity, Eq. (12) says that A
behaves as /e. This turns out to be qualitatively correct
(the exact result is v/2¢) and corresponds to the existence
of an asymptotic limit
with

€e—>o00 and = —0, Vez =€ finite, (13)

where f(z,€) ~ ¢(£), so that

4(€)

This is the classical “frozen turbulence” [11] limit, which
we examine in more detail in Sec. IITI A. In Sec. IV A, we
show that this /e «x a asymptotic scaling applies to any
wave number spectrum: from Eq. (7), we obtain

Afe) ~ = V2e. (14)

D(a) — Ca (15)

a— oo

with

o Tepr(k) \M?
o=1(S2Eih) 19

When the model is not isotropic, however, the expres-
sion that generalizes Egs. (15) and (16) applies to the
determinant of the diffusion matrix, not to the diffusion
coefficient.

On the other hand, away from the ¢ — oo asymptote,
Eq. (12) does not tell the truth. The dashed curve on
Fig. 1 shows the numerical solution of Eq. (10). [With the
units of Fig. 1, (9) leads to e = (1/2)a? and A = (n/2)D.]
Near € = 1, one observes a transition to a small-€ regime
where A goes to zero linearly. It may seem surprising
that the mere replacement of f(x) by A times x has
such misleading consequences. In fact, this approxima-

tion would work if the electrostatic field correlation in
Egs. (7) and (10), instead of behaving as a simple un-
damped oscillation, was going to zero with some finite
time scale. Here, however, the scales of cos(z) and of
f(z) are both important.

So, for ¢ — 0, we are facing one of the asymptotic
problems for which perturbation methods have been tai-
lored in applied nonlinear mathematics [13]. As shown
in an appendix, the “two-variable expansion” procedure
can indeed be used here. However, the structure of (7)
and (10) (and of the more general equation we introduce
in Sec. II) is so simple that a formal analysis is not really
necessary, as will be shown in Secs. IIIB and IV B. The
essential result is that, for any isotropic model,

D(a) — Qaz a7

a—0

(in particular, for the one-wave diffusion equation,
A(e) ~ €/v/2) while, as in the large-e limit, the corre-
sponding relation in the anisotropic case involves the de-
terminant of the diffusion matrix.

At this point, it may be interesting to note that these
large- and small-e¢ asymptotic results furnish a sounder
alternative to the somewhat arbitrary choice of units in-
troduced in Ref. [7] to allow a comparison of the theory
with the computer simulations. Indeed, the asymptotic
limits of D/a and D/a? have the dimensions of a length
and a time, respectively, so that their explicit expressions
(15) to (17) define units which make both asymptotes
identical for all isotropic models, of course. This alter-
native definition does not lead to important numerical
differences, however, as we show in Sec. V.

The following sections are organized as follows. Sec. II
presents the derivation of the nonlinear equation gener-
alizing (7) to the case where the randomly phased waves
field [Eq. (3)] has an arbitrary spectrum [i.e., arbitrary S
and p(k)]. The asymptotic limits of large and small am-
plitudes are then examined for the simple one-wave dif-
fusion equation where all developments are transparent
and the asymptotic equations can be solved analytically;
this is the content of Secs. III A and IIIB. This anal-
ysis is then adapted to arbitrary spectra in Secs. IV A
and IVB. In Sec. V, we present some numerical results
and their theoretical implications. The Appendix gives
a brief derivation of the results of Sec. IIIB with the
two-variable expansion procedure.

II. DERIVATION OF THE NONLINEAR
DIFFUSION EQUATION

Following Refs. [5] and [7], we now derive the gen-
eral diffusion equation corresponding to the electrostatic
field model defined in Eq. (3). Thus, we consider the
two-dimensional motion of a test guiding center obey-
ing Eq. (1), assuming that the random field E(x(t),t)
is stationary and homogeneous. Isotropy is not assumed,
however, so that to describe the particle diffusion we need
to consider the matrix F(t) defined as follows in terms of
the displacement r(t) = x(t) —x(0):
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Fap(t)=(ra(t)ra(t))
=([za(to+t)—za(to)|[zs(to+t)—za(to)]) ~ (18)

with (a, 3) = (z,y). We shall at some point consider the
transformations of this matrix under finite rotations, but
these questions will be rare and simple so that we shall
allude to tensorial considerations only when necessary.
Very few ingredients are needed to obtain the diffusion
equation.
(a) The stationarity assumed in (18) relates the time
evolution of F(t) to the velocity autocorrelation function:
dz
zF®) = (vt)v(0) + (v(0)v(2)). (19)
(b) Since the guiding-center equation of motion (1) has
the pleasant property that it relates the velocity to the
field, we have
c

EvO) = (£) (Bx(t), ) x 1) (E(x(0),0) x 1,)).
(20)

(c) For an arbitrary field, we would proceed by expand-
ing E(x,t) in a Fourier series and make the Corssin-like
[10] approximation of replacing the average value by a
product of averages, as follows:

Vo) = () T (Ba(t) x LIE_g0)x1.]
) ><eiq-[x(t)—x(O)]) (21)

~ () TABa(t)x 1)E_o(0) x1.])
: x (S X -xOly (92)

However, for the simple model field we are considering,
this approximation is not needed; indeed, substituting its
expression [Eq. (3)] in (20), we obtain

(v(t)v(0))
= (c—g) Uiz > p(K)p(k") (K x1.) (k" x1,)
S k' k€S

X <COS[kI 'x(to +t) —w(to +t) +(pkl]

x cos[k” -x(to) —wto+pir]). (23)

When the product of cosines is then replaced by the
corresponding sum, one observes that only one term can
satisfy the homogeneity and stationarity requirements
(with k' = k") and that the phases then cancel; the
average thus reduces to

1
2 Okt —k (cos[k'-r(t) - wt]). (24)
(d) Finally, to obtain a closed equation for F(t), we

approximate this average by the first (Gaussian) term in
its cumulant expansion:

(cosk-r(t) — wt]) ~ e~ FFEOk co5(ut), (25)

where

k-F(t)k = Y kyFos(t)ks. (26)

~¥é

Substituting Eqgs. (23)—(25) into (19), we arrive at the
differential equation

2
%Z-F(t) = a? cos(wt) Uiz S P (k)(kx1.)(kx1,)
S kes
xe  FF®k (97)

with the initial conditions: F(0) = dF(t)/dt|:=0 = 0.

The solution F(t) depends on the turbulence ampli-
tude parameter a = cE/B and on the spectrum [i.e., on
S and p(k)]. However, the equation is bilinear in k, so
that its solution is invariant with respect to the change
of sign of all the vectors k in S. Let us call S the set {k}
thus obtained; then, Eq. (27) predicts the same diffusion
law for test particles moving in fields corresponding to S,
to S or to (S + S). This is the reason why the models
leading to the different simulation results {7,9] in Fig. 1
are described by the same theoretical curves. This par-
ticular symmetry of the theory clearly originates in the
Gaussian approximation (25).

The differential equation describes the time evolution
of the symmetric matrix F(t). To obtain any information
(even a global one as the diffusion coefficient), we need in
general to solve a system of three coupled equations. But
clearly, any symmetry of S (pertaining to the symmetry
group of the plane square lattice) will reflect itself in
F(t), which may imply, for example, F,(t) = 0 and/or
F,.(t) = Fyy(t) (in some reference frame). If both of
these relations apply, one is left with the “isotropic”
equation (7).

We have verified that the asymptotic property [Eq. (8)]
of the diffusion equation (7) also holds for (27): for all
spectra and all values of the amplitude, the derivative of
the trace (r%(t)) of F(t) for t — oo goes to a constant,
the diffusion coefficient D. We also observed that, as a
function of a, D has clear asymptotic behaviors: D x a
for @ = oo and D o a2 for a — 0. These behaviors are
the subject of the following sections. We start with the
simple case of the one-wave diffusion equation.

III. ASYMPTOTIC BEHAVIOR
OF THE ONE-WAVE DIFFUSION EQUATION

We now examine the asymptotic behavior of the dif-
ferential equation

d?f(z,€)
dz?

with f(0,€¢) = df(z,€)/dz|.=0 = 0, in the limits € =& oo
and € — 0.

= ecos(z) e @9, (28)

A. Large amplitude limit

The existence of a classical asymptotic limit here is
very easy to establish. Indeed, if we introduce in Eq. (28)
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the variable ¢ = \/ex, we obtain

a2 f ,€ (e

TR — cos(e/ye) e fteo. (29)
When we then take the limit defined in Eq. (13), the
function cos(z = £/+/€) goes to 1 for any finite value of
£, so that the asymptotic limit ¢(§) of f(x,€) obeys

dzddé(f) = e~ %) (30)

[with ¢(0) = d¢(€)/d€|¢e=0 = 0]. This equation has a
diffusive solution: starting from zero with a zero slope,
the function ¢(¢) grows with a curvature that has its
maximum at the origin and decreases continuously to-
wards zero (exponentially for £ — o0): ¢(£) approaches
an oblique asymptote.

In fact, the exact solution of (30) is known [14]:

(&) = 2Incosh (%) , (31)
dgle) €
& v2tanh (\/§> , (32)
whence, the result we are looking for
_ ¥(z:¢) 998 _ :
A(E) - dz z—r00 oo \/E T'E—»oo B \/%

(33)

Figure 2 shows how the numerical solution of Eq. (28)

flx, &

0 1 .
0 25 5 7.5
X

£

FIG. 2. One-wave diffusion model [Eq. (28)]. Approach to-
wards the large-e¢ asymptotic limit of (a) the solution f(zx,€)
and (b) its scaled derivative e~*/2df(z,€)/dz. Numerical solu-
tions (solid lines) are plotted vs the scaled variable e~ 1/2g for
Ine = (a) 0, (B) 1, (7) 2. The dashed lines are the asymptotic
limits [Egs. (31) and (32)].

and its scaled derivative (1/./€)df/dz approach (31)
and (32).

A very direct way to this result and to an estimate of
the corrections is to multiply both sides of Eq. (28) by
df /dx, which leads to

4 (i)z ;
dr \ dzr

= —2¢ cos(m)%e—

—26% [cos(z) e ] — 2esin(z)e™f  (34)

and, thus, after integrating from zero to infinity,

VAN = 1 sin(e e~ ")
— — 2¢(1 ——/ dz' sin(z')e — 2e.
dr ) =—oo o e—o0

(35)

The integral yields an e-independent correction, as can be
secn by introducing the variable ¢’ = /ez’ and expanding

sin(z') = o’ = &'/ /€.

B. Small amplitude limit

When € goes to zero, the time scale of f(z,€) goes to
infinity. The oscillations then play an essential role in
determining the solution of the one-wave diffusion equa-
tion (28). To see how the short- and long-time behavior
combine in this solution, let us examine the straightfor-
ward expansion of f(z,¢) in powers of ¢,

f(z,e) = fo(z) +efilz) + € fa(x) +-- . (36)

When this is substituted into the differential equation
and the resulting series is solved order by order, with
due account of the initial conditions, one obtains for the
first terms:

fo(z) =0,
fi(z) =1 — cos(z), (37)

2

fa(z) = —-g + % + cos(z) — %cos(Zm),

One observes that (a) the nonlinearity of the differen-
tial equation generates, order by order, harmonics of the
fundamental oscillation cos(z), (b) among the second-
order contributions, there is a term o (ex)?, which will
ultimately dominate the others when = becomes large.
This suggests that, when € goes to zero, z will appear
in two variables corresponding to different scales: the
variable zo = z of the oscillations, plus a second scaled
variable £; = ez, which will govern the slow growth of
the dominant terms (and, as can be seen in the few next
orders, the behavior of the oscillation amplitudes).

When these two variables are substituted in the
straightforward expansion, the resulting series can be re-
arranged to take the structure of a Fourier series:
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f(z,€) = P(z1,€) +Z [en (21, €) cos(nzo)

+8p(z1, €) sin(nzo)], (38)

and the terms in the coefficients can be grouped accord-

ing to the remaining powers of € to yield, for example, |

f(z,€) = pO (1) + e[p@(21) + e cos(zo)]

P(z1,€) = P O(z1) + eV (z1) + @ (z1) +--- .
(39)

A closer examination of Eq. (37) and the few next or-
ders in (36) allows us to see that (38) has the following
relatively simple form:

+ €2 [1/:(2)(:31) + c§2)(:c1) cos(zo) + cgz)(xl) cos(2zg) + sgz) (z1) sin(zo)] + O(€3). (40)

Of course, the coefficients in this series are only obtained as their series expansions in powers of z;, arising from
the small-e and finite-z expansion (36) and (37); for example,

2 4
(0) =n_%n o,
1/) (.’1:1) 4 48+ ’

2
T
cgl)=_1+zl_+..._ (41)

However, to determine these unknown functions (and to confirm that an asymptotic solution of this form does exist),
it suffices to substitute Eq. (40) into (28). The left-hand side becomes

d?f(z,€) _

o[ PPO(z1)  dei (z1)

o = e (@1) cos(zo) + ¢

—cgz) (1) cos(zo) — 4c£2)(a:1) cos(2xq) — 3(12)(931) sin(z)

On the right-hand side, expanding the exponential leads to
ecos(zo) e~ ¥ " (1 — e [pM (z1) + c{ cos(zo)] + O(e?)}

dz? dz,

sin(zo)

+ O(€%). (42)

= ecos(zo) e ¥V @) — 2e=#V(@1) | (D (2 cos(zo) + cgl)(zl)%[l + cos(2a:o)]] + O(€). (43)

Equating first-order terms, we find

(1) = — e, (44)

so that the formal solution (40) becomes

f(@,€) = 9O (1) + e[V (21)
—e~ ¥ V(=) cos(xo)] + O(€?). (45)

To determine (9 (1), we simply collect the terms of
second order that do not depend on zo; we thus obtain
the differential equation

d21/)(0)($1) 1 (1) 1 _2‘,,(0)(,1)
——dx—%— = —561 ((El) = 56 (46)

[with $(©(0) = dy(©)(z,;)/dx;|z,—0 = 0]. This equation
is the same as (30), whence the solution

$©(z,) = Incosh (%) : (47)

Thus, the small- and large-e asymptotic limits of f(z, €)
are the same functions. However, the variables being

different, so are the derivatives: instead of Eq. (32), (45)
gives

df (z,¢€) e [dq/;(o)(a:l) + e—¢(°)(zl)sin(zo)] + 0(52)
dz dz,

sin(z)
cosh(ex//2)

€ [L tanh(ex/v/2) +

7 ] + O(€?).

(48)

[

Figure 3 shows how the numerical solution of Eq. (28)
approaches its asymptotic limit when ¢ — 0. On
Fig. 3(a), f(x,€) does look like the form we have ar-
rived at [Eq. (45)], i.e., the sum of a growing function
of ex and of an oscillation that starts like €[1 — cos(z)]
[Eq. (37)] and decays when the growing part comes close
to its oblique asymptote. On Fig. 3(b), the scaled deriva-
tive (1/€)df(x,€)/dz is plotted versus exz. The second
term in the asymptotic limit [Eq. (48)] has a typical two-
variable form and raises the usual problem of the strict
€ — 0 limit: when expressed in terms of the scaled vari-
able, the oscillation sin[e~!(ez)] has a frequency that goes
to infinity. In the figure, we therefore plotted the three
sets of values of the asymptotic form where sin(z) equals
—1, 0, and +1, and we compared them with some of
the corresponding values from the numerical solution for
Ine = —4. The complete solution is shown for Ine = —2.

In accordance with Eq. (8), the amplitude of the awk-
ward oscillation in Eq. (48) goes to zero when we let z
go to infinity (with e fixed), so that the “diffusion coeffi-
cient” A(e) [Eq. (11)] is well behaved in the € — 0 limit,
and we thus find

S CY] _ €

dm &—o0 €0 dzl &1—00 ﬁ

(49)

This is the result we wanted to establish: when € goes to
zero, the diffusion coefficient A(€) vanishes linearly.
This asymptotic solution of the one-wave diffusion
equation can also be arrived at with the multiple-variable
expansion method [13]; this derivation is given in an ap-
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FIG. 3. One-wave diffusion model [Eq. (28)]. Approach
towards the small-e asymptotic limit. (a) Plot of the numer-
ical solution f(z,€) vs z for Ine = (a) -2, (B) -3, (y) —4.
(b) Plot of the scaled derivative e~ 'df(z,€)/dz vs the scaled
variable ex. Solid line: numerical solution for Ine = —2. Dot-
ted lines: three sets of values from the asymptotic solution
[Eq. (48)] for sin(z) equal to —1, 0, and +1. Open circles:
for comparison, some of the corresponding points from the
numerical solution for Ine = —4.

pendix. Let us note however that this method has been
initially devised to deal with the effect of small pertur-
bations on the known solutions of differential equations.
The problem of Eq. (28) is different: for € = 0, its solu-
tion reduces to f(z,0) = 0. So, when € grows from zero,
the structure of the asymptotic solution is determined by
that of the “perturbation” in the right-hand side of the
equation. This explains why this Fourier series structure
appears so clearly in the pedestrian derivation above.

IV. ASYMPTOTIC BEHAVIOR
OF THE GENERAL DIFFUSION EQUATION

We here address the large- and small-amplitude
asymptotic problems associated with the diffusion equa-
tion (27), where the wave number spectrum is arbitrary.
The solutions of these problems are very similar to those
we obtained in Sec. III for the one-wave diffusion equa-
tion (28). This appears clearly when (27) is rewritten
as

d? ~
ﬁF(t, n) = ncos(wt) K(F(t,n)), (50)

where we introduced the dimensionless perturbation pa-

rameter 7) (associated with a?) and where

Zp (k) iie_%k'F'k (51)
% kes

only depends on t through the unknown F(t). The nota-
tion k for kx 1, indicates that this vector is obtained by
rotating k through an angle of 7/2 so that k = (kz, ky)
becomes k = (ky, —kz).
the matrix I~(, with the same meaning. This finite rota-
tion is the only transformation we need to consider. For
the sake of brevity, we shall also use, instead of (51), the
more compact notation

The same notation is used for

K(F) = {kke 35Tk}, (52)

Since r(t) and k are vectors, the matrices F and K, de-
fined in Eqs. (18) and (51), correspond to tensors: they
are positively weighted sums (proportional to average
values) of the dyads r(¢)r(t) and kk, and they have the
same symmetry properties. Only the following ones will
be needed; if we denote by A the matrix associated with
the dyad aa, then

(a) A obeys the following transformation law under a
rotation of 7/2:

2 ~ 2 —
A:(“w “w‘.jy)—>A=( %y “g"’).
AyQy (ly —QrQy a,
(53)

(b) The trace and the determinant of A are positive
semidefinite; indeed,

q-Aq = (Z qaaa> = (q-a)2 >0, Vq, (54)

and therefore
trA >0 and det A > 0. (55)

(c) If A depends on a variable z, it is easy to see that

Z Aaﬂ(z)

A(z) —A(z) Aop(z) = diz det A(z).

(56)

In addition, we shall make use of the invariance of the
scalar quantity

q-Aq=qAq (57)
which implies, in particular, the two following identities:
qge :vAa = 29 c-laAq (58)
6A
K(F) = —2—{e_‘k Fky, (59)

the latter being a direct consequence of Eq. (52).
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A. Large amplitude limit

As for Eq. (28), there exists for (50) a limit where
n — oo and ¢ =+ 0, 7 = /7t remaining finite. Then,
cos(wt) — 1, F(t,n) ~ ®(7) and the differential equation
thus has the following limit:

d? ~
—58(r) = K(2(r)) (60)
[with ®(0) = d®(7)/dT|r=0 = 0].

For any model [i.e., any domain S and weight p(k) in
Eq. (51)], (60) defines ®(7), the large-amplitude limit of
F(t,n) = (r(t,n)r(t,n)), from which the diffusion matrix
D(n— o0) can be obtained as the limit of its derivative
when 7 goes to infinity. However, similarly to what we
showed in Egs. (34) and (35), an exact information con-
cerning the diffusion matrix can be derived directly as
a first integral of the differential equation. Indeed, with
the help of Egs. (56) and (59), (60) leads to

4 (1 88) _ 8B 5B
ar \ar ) T dr dr2
_ dg. 3 —1lk.&.k
= 2dr'a§{e 3 T
d _1p.s.
=-2--{e thedky, (61)
whence the integral
d® _lk.®.
det —— = 2{1-e shedky (62)

Now, what we wrote about ¢(£) after Eq. (30) is easily
translated to hold here for k-®(7)-k (Vk), and thus for
the determinant and the trace of ®(7). Indeed, from
Eq. (54), we know that these quantities are positive semi-
definite:

k-®(7)-k = ((k-r(r))? >o0. (63)

They start from zero at 7 = 0 with a zero slope and we
now show that they grow with a curvature that is also
positive semidefinite: from Eq. (60) again,

) d*®(7)
dr?

Kk k=k{k ke ¥k}, Kk

= {(k-K )2~ 3K ¥}, >0, (64)

the equality holding only when all exponents k’-®(7)-k’
go to infinity along an oblique asymptote. Therefore,

d® a? 2
det — — 2{l}k =2 o1 > pi(k). (65)
kes

Thus, when the amplitude a goes to infinity, the
asymptotic limit of the diffusion matrix D = d®/d7|, 50
obeys the following relation:

1 _ Sxes PP (k)
D = 1 (el ). (66)
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which expresses the linear “frozen turbulence” [11] scal-
ing behavior of the diffusion equation (27) in the large-
amplitude limit. If the spectrum is isotropic, Eq. (66)
leads to the announced result [Egs. (15) and (16)] for the
diffusion coefficient D.

B. Small amplitude limit

From the formal similarity between Eq. (50) and the
one-wave diffusion equation (28), it follows that the anal-
ysis leading to the small-¢ limit, in Sec. IIIB and in
the Appendix, can be easily adapted here: the only
important modification is that the functional depen-
dence exp ( — f(z,€)) is replaced by K(F(t,7)), defined
in Eq. (51) as a linear combination of exponentials of
—3k-F(t)-k. Thus, when we write F as a two-variable
expansion in terms of tp = ¢t and ¢; = nt

F(t) = FO(to, 1) + nFU(to,1,)
+ P F®(tg, t1) + -+, (67)

and expand K(F) as

- - 9 1~

— 0 1). 0
K(F) = K(F9) + 9 [F( )'éf(o—)] KF?)+.--, (68)
the analysis follows the same path and one obtains [com-
pare with Eqgs. (45) and (46)]

F(t)= ¥ (t,) + n(‘I’“) (t2)
- LR (tl))cos(wto)) Lom?)  (69)

and

d?g() 1 [~ 8 1~
—E = Tp [K(-Ir(")):m] K(2©) (70)

[Wlth ‘I’(O)(O) = dw(o)(tl)/dtllt]_:o = 0]

Here as in the large-amplitude limit, solving these
equations for any particular spectrum yields the small-
amplitude asymptotic limit of F(¢) and its first deriva-
tive, and thus allows us to evaluate the diffusion ma-
trix D(n — 0). However, as in the large-amplitude limit
again, a first integral of Eq. (70) can be obtained and
leads for t; — oo to an exact expression of the determi-
nant of d¥(®(¢,)/dt; (and hence of D) in terms of the
parameters defining the model. Using Eq. (56), we have
indeed

d de©  quO G2g0
at, O Tdt, | dt, | de?

7(0)
1 d")bqﬁ hayd (0)
g X e 3 Kas(¥)
a,p v,

xmﬁ,ﬁ(w(")). (71)

¥4é
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Now, by Eq. (59),

3 fayd 32 1 (0)
_Kaﬂ(‘l’(o)) — _2______:__{e—§k.\ll .k}k
Y oyl ov)

8
= ——K.s(¥9), 72
3 %(2 +6(2) (72)

so that, using (56) again,

d d¥©)
Eadet dtl
7,(0)
1 dy 3 ~ o}
= o K 5(®©)—— K. ;(®)
2 Z ‘76 “/5
2w a, dt, v,9 B’pc(xoﬁ)
d~(0)
. ;/""" 95 det K(¥©)
2w oy 1 ‘9'/’(13
1 d
= (0)
207 df, det K(¥'%) (73)
and finally
d¥w©) 1
== = (0) - (0)
det dt 202 [det K(®'™(0)) — det K(¥'™(¢1))].

(74)

The second term vanishes when t; goes to infinity.
More precisely, in the definition of K(W¥(?) [Egs. (51)
and (52)], the scalar k-¥(®(¢;) -k in the exponential
is positive semidefinite [Egs. (54) and (55)] and, as we
now show, has a positive semidefinite curvature (the same
holding for the trace and the determinant of ¥(?)):

0

2. (0) - ~
¥ k= _ﬁ [K(\P(O))-m—} k-K(2©) .k

T de? 9w (©

o (K P (ke pew

1l

xe 3K EOKDY Y > 0. (75)

So, k-¥((t;) -k increases monotonously with ¢; and
approaches an oblique asymptote in the limit ¢; — oo:
then, all components of K(¥(%) go (exponentially) to
zero and

dw© 1
. — )
det G 4o 207 det K(¥'%(0))
=1 (Z 2dt S Pk kk | . (76)
= 507 (o2 e kesp .

This result yields an explicit expression of the diffusion
matrix D(n — 0). From Eq. (69), we have indeed

dF(t) _ [d®O)(t,)
dt dt,

+£ﬁ(\1’(°)(t1))8in(w%)} +omd) ()

[compare with Eq. (48)] and since K(%¥?) vanishes at
infinity,
dF(¢,7)

©)
D(n) = — 4R )

n—oo dt1

(78)

t—o0 t; =00

With Eq. (76), this leads to our main result: the diffusion
matrix D(a — 0) obeys the asymptotic relation

12 (Tespi(k)kk
o detD = oz det( S o PRV ) (79)

This agrees with our numerical observations; in particu-
lar, (a) for all models, the diffusion coefficient vanishes as
a?, (b) for isotropic models, the ratio D/a? is independent
of the wave number spectrum: Eq. (79) becomes (17).
Let us stress again that this property is related to the
presence of a single frequency in the version of the model
electrostatic field that we have considered [Eq. (3)].

V. CONCLUSIONS

To allow a more precise comparison of a nonlinear the-
ory [5] with computer simulations [7,9] of the diffusion of
a test guiding center in a given electrostatic turbulence,
we have derived the theoretical equations corresponding
to the randomly phased waves model [Eq. (3)] for the
electrostatic field, with a single frequency and an arbi-
trary wave number spectrum. It appeared that the only
approximation that was needed was (25), i.e., that the
diffusion corresponds to a Gaussian process. So, if the
precision of the numerical simulations can be well as-
sessed, the discrepancy has to be related to this approx-
imation. This is of course no surprise: with the field (3),
the Hamiltonian equations of motion [Eq. (6)] generate
chaotic trajectories, and it is known that a Gaussian de-
scription of these is only approximate (and inadequate
when the amplitude is small) [7]. We have examined the
asymptotic behavior of the diffusion coefficient when the
turbulence amplitude a = cE /B goes to infinity or to
zero. The answer to these questions was first obtained
in the particular case of the one-wave diffusion equation
(28), where the asymptotic equations can be solved ex-
actly. The general results are given in Egs. (66) and (79):
the diffusion matrix D(a) scales as a in the limit a — oo
and as a? for a going to zero. If the field is isotropic,
we obtain explicit expressions for the limits of the ratios
D/a or D/a? [Egs. (15)-(17)].

The small-a result is very striking: the limit of D/a?
does not depend on the wave number spectrum. As we
stressed throughout, this result is related to the appear-
ance in Eq. (3) of a single frequency.

When a goes to infinity, a classical “frozen turbu-
lence” scaling is found: D/a goes to the limit C given
in Eq. (16). We have examined this expression for power
weights p(k) oc k™. In the limit of a continuous spec-
trum, C is then readily evaluated as
(r=2) (1= p20-0) )2
(=1 - )|

C(Va'Y) = %’\max[ (80)



where v = kmin/kmax- The limit of this expression for
v —1 coincides with the one-wave diffusion model:

2 4
[This is obtained at once from Eq. (16); using (9) to (11),
it yields (33).] On the other hand, when v goes from 1
to 0, C decreases towards

_511/2
com=cam[2=3] (52)

Direct evaluations of C(v,v) allow us to see that (81)
and (82) are in fact upper and lower bounds for the ratio
D/a for isotropic spectra. Therefore, taking account of
the detailed structure of the wave number spectrum does
not bring the theoretical description closer to the simu-
lation results; for example, for v = 3 (the value chosen
in Ref. 7]), the bounds for D/a are only separated by a
factor v/2 and the discrete spectrum corrections displace
the theoretical values (very slightly) further away from
the simulation points (see Fig. 1).

We have noted in Sec. I that, since D/a and D/a?
have the dimensions of a length and a time, respectively,
their asymptotic limits [Egs. (15) to (17)] allow us to de-
fine a model-dependent system of units, similar to that
introduced in Ref. [7] and used in Fig. 1, which makes
all isotropic models obey the same asymptotic laws, of
course. The few numerical results above show that this
is more than a dimensional argument. In particular, as
Fig. 1 indicates, when D(a) is computed with these units,
all curves (for isotropic fields ranging from the one-wave
diffusion model to the continuous case with v = 0) come
very close together for all values of the turbulence ampli-
tude.
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APPENDIX: TWO-VARIABLE EXPANSION
DERIVATION OF EQS. (45) AND (486)

The small-e asymptotic solution of Eq. (28), obtained
in Sec. IIIB, can be arrived at using the two-variable
expansion procedure [13]. To sketch this derivation, we
introduce the variables o = = and z; = ex and expand
f(zo,x1,€) in a perturbation series:

f(zo,z1,€) = FO (0, 21) + ef M (20, z1)
FEfD(zge) b (AD)

The expansion of the right-hand side then yields
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e f=e M (1—efW 4. (A2)

and, with the chain rule for the derivatives, (28) becomes

6_2 + 2e——— + ezéi_ (f(o) + 6f(1)+...)
oz? ‘amoazl Ox?

= ecos(zo) e F V(1 — efM +...). (A3)

The initial conditions for the f(®) are obtained by ex-
panding those for Eq. (28).
The order zero equation is simply

8250
=0; (A4)
ox?
therefore,
FO (o, 21) = ¥ (21) + 20$® (1), (A5)
with the initial conditions
£©(0,0) =4 (0) =0, (A6a)
o f(O) ©
0)=0 A6b
e | =900 (A6b)
The first-order equation is
62f(1) a2f(0) 40
oz} dz0dT, cos(zo) e~/ (A7)

The second term in this equation equals 2d%(%) (z,)/dz,,
does not depend on z¢ and would therefore make a con-
tribution o (z9)? to f(), which would dominate f(®) for
large values of zo; hence, this term is secular and must
vanish. This then says that 17;(0) does not depend on z;
and by (A6b) is equal to zero; thus,

f(O) = 1/,(0)(,,:1)

does not depend on zo. Equation (A7) then simplifies to
the following linear inhomogeneous form:

(A8)

aZf(l)
oz?

= cos(zo) e ¥ @1,

(A9)

The solution of (A9) (and of the higher-order equations)
is the sum of the general solution of the homogeneous
equation [as in (A5), without the secular term  zo] plus
a particular solution obtained by direct integration; thus,

FO = pMW(2) — cos(zo) e ¥ =), (A10)
with the initial conditions
fW0,00=0 — ypB(0) =1, (Alla)
(1) (0) (0)
of O _o — BT _o. (A11b)
Oz 0,0 oz, 0,0 dz, |,
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Equations (A8) and (A10) confirm our solution
[Eq. (45)].

To determine %% (z,), we must go to order €*:

825 92 f(1) 8250
Oz? + 8zo0z, Oz?

= cos(zo) e f (=)
(A12)

or

9272
oz3

e—¥ V(=) @240
dzl dl‘zl,

+ 2sin(zo)

= —cos(zo)p M) (z1) ¥

1
+51 + cos(2zo)] e~ 2 (@), (A13)
In addition to contributions that oscillate (around a
zero average), this equation involves two secular terms

(independent of zq), the canceling of which leads to
Eq. (46) for (.
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